US 2022/0092773 Al

Length Adjustment 835 for the Microscopy Device 805 to
adjust any focus issues. This Machine Learning Model 833
trained by monitoring, over time, how the Microscopy
Device 805 is adjusted in response to the acquired micros-
copy images and the output of the Trained CNN 830. Such
monitoring may be performed, for example, by recording
instructions sent to the Microscopy Device 805. Alterna-
tively, an operator can manually enter the focal length
changes into the Image Processing System 850. Using the
monitored data, a manifold (i.e., a basis set) of well-focused
images can be learned that provides the correlation between
the focal length and the quality of the image. Example
techniques that can be employed to learn the manifold
include, without limitation, principal component analysis
(PCA), locally-linear embedding, and diffusion maps.

[0036] The Machine Learning Model 833 outputs a Focal
Length Adjustment 835 for the Microscopy Device 805.
This Focal Length Adjustment 835 is then used as input to
an Instruction Generator 840 that translates the adjustment
into Executable Instructions 845 for the Microscopy Device
805. The implementation of the Instruction Generator 840 is
dependent on the interface of the Microscopy Device 805.
However, in general, the Instruction Generator 840 can be
understood as software that provides an additional interface
layer between the Image Processing System 850 and the
Microscopy Device 805. In some embodiments, the
Machine Learning Model 833 can be trained to directly
output the Executable Instructions 845, thus obviating the
need for the Instruction Generator 840.

[0037] FIG. 9 provides an example of a parallel processing
memory architecture 900 that may be utilized by an image
processing system, according to some embodiments of the
present invention. This architecture 900 may be used in
embodiments of the present invention where NVIDIA™
CUDA (or a similar parallel computing platform) is used.
The architecture includes a host computing unit (“host”) 905
and a GPU device (“device”) 910 connected via a bus 915
(e.g., a PCle bus). The host 905 includes the central pro-
cessing unit, or “CPU” (not shown in FIG. 9) and host
memory 925 accessible to the CPU. The device 910 includes
the graphics processing unit (GPU) and its associated
memory 920, referred to herein as device memory. The
device memory 920 may include various types of memory,
each optimized for different memory usages. For example,
in some embodiments, the device memory includes global
memory, constant memory, and texture memory.

[0038] Parallel portions of a CNN may be executed on the
architecture 900 as “device kernels” or simply “kernels.” A
kernel comprises parameterized code configured to perform
a particular function. The parallel computing platform is
configured to execute these kernels in an optimal manner
across the architecture 900 based on parameters, settings,
and other selections provided by the user. Additionally, in
some embodiments, the parallel computing platform may
include additional functionality to allow for automatic pro-
cessing of kernels in an optimal manner with minimal input
provided by the user.

[0039] The processing required for each kernel is per-
formed by grid of thread blocks (described in greater detail
below). Using concurrent kernel execution, streams, and
synchronization with lightweight events, the architecture
900 of FIG. 9 (or similar architectures) may be used to

Mar. 24, 2022

parallelize training of the CNN. For example, in some
embodiments, processing of individual cell images may be
performed in parallel.

[0040] The device 910 includes one or more thread blocks
930 which represent the computation unit of the device 910.
The term thread block refers to a group of threads that can
cooperate via shared memory and synchronize their execu-
tion to coordinate memory accesses. For example, in FIG. 9,
threads 940, 945 and 950 operate in thread block 930 and
access shared memory 935. Depending on the parallel
computing platform used, thread blocks may be organized in
a grid structure. A computation or series of computations
may then be mapped onto this grid. For example, in embodi-
ments utilizing CUDA, computations may be mapped on
one-, two-, or three-dimensional grids. Each grid contains
multiple thread blocks, and each thread block contains
multiple threads. For example, in FIG. 9, the thread blocks
930 are organized in a two dimensional grid structure with
m+1 rows and n+1 columns. Generally, threads in different
thread blocks of the same grid cannot communicate or
synchronize with each other. However, thread blocks in the
same grid can run on the same multiprocessor within the
GPU at the same time. The number of threads in each thread
block may be limited by hardware or software constraints. In
some embodiments, processing of subsets of the training
data or operations performed by the algorithms discussed
herein may be partitioned over thread blocks automatically
by the parallel computing platform software. However, in
other embodiments, the individual thread blocks can be
selected and configured to optimize training of the CNN. For
example, in one embodiment, each thread block is assigned
an individual cell image or group of related cell images.

[0041] Continuing with reference to FIG. 9, registers 955,
960, and 965 represent the fast memory available to thread
block 930. Each register is only accessible by a single
thread. Thus, for example, register 955 may only be
accessed by thread 940. Conversely, shared memory is
allocated per thread block, so all threads in the block have
access to the same shared memory. Thus, shared memory
935 is designed to be accessed, in parallel, by each thread
940, 945, and 950 in thread block 930. Threads can access
data in shared memory 935 loaded from device memory 920
by other threads within the same thread block (e.g., thread
block 930). The device memory 920 is accessed by all
blocks of the grid and may be implemented using, for
example, Dynamic Random-Access Memory (DRAM).

[0042] Each thread can have one or more levels of
memory access. For example, in the architecture 900 of FI1G.
9, each thread may have three levels of memory access.
First, each thread 940, 945, 950, can read and write to its
corresponding registers 955, 960, and 965. Registers provide
the fastest memory access to threads because there are no
synchronization issues and the register is generally located
close to a multiprocessor executing the thread. Second, each
thread 940, 945, 950 in thread block 930, may read and write
data to the shared memory 935 corresponding to that block
930. Generally, the time required for a thread to access
shared memory exceeds that of register access due to the
need to synchronize access among all the threads in the
thread block. However, like the registers in the thread block,
the shared memory is typically located close to the multi-
processor executing the threads. The third level of memory
access allows all threads on the device 910 to read and/or
write to the device memory. Device memory requires the



